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Fig. 1. Rendering of time-resolved transport using proposed DARTS in a scene with complex surface materials and homogeneous scattering media. DARTS
integrates transient diffusion approximation into the path construction and adapts our elliptical sampling to provide path length control, enabling high quality
time-of-light rendering and can be compatible with different existing frameworks. The example scene is illuminated by two non-synchronized pulse emitters
with different start times of emission. Each image is rendered for 20 minutes. It can be seen that our sampling approach can greatly improve the SOTA photon
based methods and provide lower overall MSE in the same rendering time.

Time-of-flight (ToF) devices have greatly propelled the advancement of
various multi-modal perception applications. However, achieving accurate
rendering of time-resolved information remains a challenge, particularly in
scenes involving complex geometries, diverse materials and participating
media. Existing ToF rendering works have demonstrated notable results, yet
they struggle with scenes involving scattering media and camera-warped
settings. Other steady-state volumetric rendering methods exhibit signif-
icant bias or variance when directly applied to ToF rendering tasks. To
address these challenges, we integrate transient diffusion theory into path
construction and propose novel sampling methods for free-path distance
and scattering direction, via resampled importance sampling and offline
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tabulation. An elliptical sampling method is further adapted to provide con-
trollable vertex connection satisfying any required photon traversal time. In
contrast to the existing temporal uniform sampling strategy, our method is
the first to consider the contribution of transient radiance to importance-
sample the full path, and thus enables improved temporal path construction
under multiple scattering settings. The proposed method can be integrated
into both path tracing and photon-based frameworks, delivering significant
improvements in quality and efficiency with at least a 5x MSE reduction
versus SOTA methods in equal rendering time.

CCS Concepts: • Computing methodologies→ Ray tracing.

Additional Key Words and Phrases: transient rendering, time-gated cameras,
participating media, modeling and simulation
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1 Introduction
The past decade has witnessed noteworthy advancements in time-
of-flight (ToF) imaging methods which have the capability to cap-
ture transient responses of propagating photons utilizing ultra-fast
sensors [Jarabo et al. 2017]. With the incorporation of temporal in-
formation, ToF imaging systems have revolutionized conventional
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imaging, making it possible to sense targets beyond the line of sight
[Royo et al. 2023] and operate well in extremely challenging en-
vironment, such as heavy fog [Du et al. 2022]. Consequently, ToF
devices propel the practical process of autonomous driving, robotic
perception and scientific exploration, etc.

In tandem with ToF imaging techniques, ToF rendering provides
an enhanced understanding of temporal data across various scene
configurations, and thus contributes to the development of optical
transmission theories and imaging algorithms, and the optimization
of sensor systems [Marco et al. 2017a; Zhang et al. 2022]. More-
over, ToF rendering plays a crucial role in generating extensive ToF
datasets across diverse scenarios involving complex participating
media, geometries and material properties, which are imperative
for the advancement of data-driven methods [Attal et al. 2021].
However, challenges reside in achieving efficient ToF rendering

within participating media due to the complexity of temporal path
construction. Despite substantial efforts directed towards steady-
state scattering rendering [Herholz et al. 2019; Lin et al. 2021], the
spatial sampling strategies fall short in generating temporal scatter-
ing paths. For transient rendering methods, certain methods achieve
temporal uniformity in path samples [Jarabo et al. 2014] or pop-
ulate the sampling domain more densely [Marco et al. 2019], but
their accuracy is limited by the neglect of importance-sampling the
contribution of transient radiance. Achieving effective importance
sampling requires that major volumetric sampling processes, such
as distance and direction sampling, incorporate transient radiance
information. This requirement poses a challenge as the transient ra-
diance information depends on global adjoint transport rather than
just local transport functions. Additionally, the challenge persists
in effectively imposing path time (length) constraints. While the
line-to-point sampling method devised by Jarabo et al. [2014] can
impose ellipsoidal path length constraint in participating media, it
prioritizes the uniform distribution of path samples over effectively
controlling path lengths. Other existing methods to impose path
length constraints either prove not directly applicable for partici-
pating media [Pediredla et al. 2019], or inefficient for full transport
and camera-warped settings [Liu et al. 2022], where scene-to-sensor
transport time must be considered [Velten et al. 2013].

In this paper, we propose a diffusion approximated residual time
sampling method (DARTS, for short), which provides full transient
path construction and effective vertex connection within complex
volumetric scenes and under camera-warped settings. To address
the challenge of constructing effective temporal sampling paths
in scattering media, instead of adopting uniform sampling in the
time domain [Jarabo et al. 2014; Marco et al. 2019], which over-
looks the radiance contribution differences of different path sam-
ples, we perform importance sampling on the transient radiance
by integrating the transient diffusion approximation (DA) into the
rendering process. This approach allows us to obtain improved
free-path distance and direction samples with enhanced overall
radiance, leading to better convergence performance. To impose
path time constraints, we extend the ellipsoidal connection method
and further combine it with the proposed DA-based direction sam-
pling to bypass challenges introduced by the reparameterization of
ellipsoidal connection [Pediredla et al. 2019] and avoid sampling

inefficiency in camera-warped settings [Liu et al. 2022] . The pro-
posed method is inherently unbiased and introduces negligible extra
memory overhead compared to the naive methods.

In particular, we make the following contributions:
• We propose a novel distance sampling method named DA
distance sampling based on transient diffusion theory.

• We propose a novel direction sampling method named el-
liptical DA direction sampling, by tabulating the transient
DA values integrated in an equal-time ellipse and develop
corresponding multiple importance sampling (MIS) strategy.

• We extend the ellipsoidal connection to volumetric render-
ing and enable its capability for importance sampling and
direction reuse, to effectively control the path length.

• We demonstrate the proposed method outperforms the ex-
isting method with at least a 5x MSE reduction and can be
integrated as straightforward plug-ins for both path tracing
and photon based frameworks.

The code for the proposed method in both pbrt-v31 [Pharr et al.
2023] and Tungsten2 [Bitterli 2018] frameworks is provided in our
supplementary materials.

2 Related Work

2.1 Time-of-flight imaging devices
ToF devices employ ultra-fast sensors to capture and count the
photons received at different time points [Jarabo et al. 2017]. This
time-resolved information is recorded to generate single time-gated
image or sequences of temporal waveforms with high temporal
resolution [Jarabo 2012], which can be applied in imaging through
scattering media [Du et al. 2022; Wu et al. 2018] and obscurants
[Halimi et al. 2021; Kijima et al. 2021], non-line-of-sight imaging
[Faccio et al. 2020; Rapp et al. 2020; Xin et al. 2019], material estima-
tion [Shem-Tov et al. 2020; Zickus et al. 2020] and improved depth
sensing [Gruber et al. 2019; Walia et al. 2022].

2.2 Time-of-flight rendering
Transient rendering. It aims to simulate the temporal responses as a
sequence of frames. Existing works can guarantee physical correct-
ness, from the basics of transient light transport for both forward
[Jarabo et al. 2014] and differentiable [Yi et al. 2021] cases, to more
complex vector light transport [Jarabo and Arellano 2018] and in
media with spatially various refraction index [Ament et al. 2014],
or to directly sample the three-bounce approximation in the non-
line-of-sight scenario [Iseringhausen and Hullin 2020]. However,
the convergence for transient rendering is slow due to the lack of ef-
ficient sampling method [Bitterli 2016b]. Efforts have been made to
importance-sample the uniform distribution of path lengths for bet-
ter temporal density estimation and path reuse [Jarabo et al. 2014].
Subsequent methods [Marco et al. 2019, 2017b] extend the photon
beamsmethod to transient state, but they introduce bias in exchange
for reduced variance. The above methods heavily rely on tempo-
ral path reuse, making it challenging to be extended to time-gated
rendering where temporal path reuse will lead to massive sample

1https://github.com/mmp/pbrt-v3
2https://github.com/GhostatSpirit/tungsten-transient-public
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rejection. Also, existing works often disregard the importance sam-
pling of transient radiance contributions during path construction
and therefore cannot guarantee a good approximation of the inte-
grand for Monte Carlo integration. Other works propose different
insights like using instant radiosity [Pan et al. 2019] for fast ren-
dering, while the visual effects are constrained to diffuse scattering,
or employ sampling methods biased towards receivers [Lima et al.
2011; Periyasamy and Pramanik 2016] and consider primarily the
spatial distribution of radiance, therefore neglecting the temporal
distribution.

Time-gated rendering. Researchers focus on improving path con-
nections to impose constraints on the path time (length). Pediredla
et al. [2019] demonstrate that, given two vertices to be connected
and a target path length, an ellipsoid can be defined and any con-
nection with one intermediate vertex sampled on this ellipsoid has
equal path length. Unfortunately, their parameterization cannot be
directly extended to volumetric rendering, as volumetric sampling
lacks intersecting polygons. Additionally, parameterizing the sam-
pling space around the ellipsoid center prevents effective importance
sampling and the reuse of sampled directions. Other methods have
taken steps to populate the sampling space more densely. Liu et al.
[2022] extend the methods introduced by Deng et al. [2019] to the
time domain, illustrating that time-related sampling can be viewed
as sampling from the sliced high-dimensional photon primitives,
where dense samples can be directly drawn from. However, this
method is not efficient under camera-warped settings [Velten et al.
2013] or with surface transport. These methods in general focus
on improving path connection for better path length control and
do not yield better multiple scattering paths, which are crucial for
high-order scattering scenarios and temporal importance sampling.

2.3 Rendering in homogeneous scattering media
Various approaches have been developed [Novák et al. 2018] to
improve the rendering quality in homogeneous scattering media.
We will focus on two most widely adopted types and briefly out-
line the challenges of extending these methods to the time domain.
2.3.1 Density Estimation Based Methods. We refer to these methods
as photon based methods. Stemming from photon mapping [Jensen
and Christensen 1998], this kind of two-pass biased estimator is later
upgraded to progressive ones [Hachisuka and Jensen 2009] . Jarosz
et al. [2011] extend the point-point 3D kernel estimator to various
point-beam and beam-beam estimators, which are later combined
with bidirectional methods [Křivánek et al. 2014]. Subsequent works
[Bitterli and Jarosz 2017; Deng et al. 2019] devise unbiased photon
estimators by shrinking the kernel to a spatial delta-function to
eliminate bias. Though these methods has temporal extensions [Liu
et al. 2022; Marco et al. 2017b], they currently prove to be either
ineffective for reduced rendering time range, such as time-gated ren-
dering, or inefficient for camera-warped settings. This inefficiency
arises from the inability to importance sample transient radiance, as
well as the dependence on temporal path reuse [Jarabo et al. 2014].
2.3.2 Monte Carlo Path Tracing. Previous methods aim to analyt-
ically approximate terms in the integrand during distance or di-
rection sampling [Georgiev et al. 2013; Kulla and Fajardo 2012].
Recent methods based on path guiding [Herholz et al. 2016; Vorba

et al. 2014] employ online learning to fit the local radiance distri-
bution. Herholz et al. [2019] further combine path guiding with
zero variance random walk theory [Hoogenboom 2008; Ren et al.
2008] to guide all scattering events. However, these methods are
inherently time-agnostic, and due to the curse of dimensionality, ex-
tending online-learning based methods directly to the time domain
significantly increases training samples sparsity.

Moreover, neither of the above methods adequately addresses the
importance of more effective path construction, which is crucial for
rendering high-order scattering. Therefore, we aim to establish a
unified framework capable of both time-gated and transient render-
ing through optimizing both path construction and path connection
strategies.

3 Background
Time-of-flight renderers lift the infinite speed of light assumption.
Thus, the radiance transport theory and estimators should explicitly
account for path time information. In the transient path integral
framework proposed by Jarabo et al. [2014], the intensity 𝐼 of an
image pixel is given by:

𝐼 =

∫
Δ𝑡0

∫
Ω
𝐿𝑒 (x𝑒 → x𝑘−1, 𝑡𝑒 ,Δ𝑡𝑒 ) 𝑓 (x)𝑊 (x1 → x0, ∥x∥)𝑑𝜇 (x)𝑑Δ𝑡𝑒 ,

(1)
where x = x0x1 ...x𝑘−1x𝑒 is the simulated path with 𝑘 + 1 vertices;
x𝑖 ∈ R3 denotes the position of path vertices; x0 and x𝑒 denote sen-
sor and emitter vertex, respectively; 𝑑𝜇 (·) is the Lebesgue measure;
Ω denotes path space.𝑊 (x1 → x0, ∥x∥) is the response function
of the sensor and is most relevant to temporal transport since it is
the function of path optical length ∥x∥. Since our work does not
account for fluorescence and other microscopic scattering delays,
factors that affect ∥x∥ can only be the accumulated path length and
emission duration Δ𝑡𝑒 . 𝐿𝑒 (x𝑘 → x𝑘−1, 𝑡𝑒 ,Δ𝑡𝑒 ) is the emission term
where 𝑡𝑒 denotes the start time of emission and Δ𝑡0 denotes the
integral space of Δ𝑡𝑒 . Typically, for a simple pulse emitter with the
start time of emission 𝑡𝑒 set to 0, the simplified term 𝐿𝑒 can encom-
pass most of the use cases. In the following, we will ignore the view
dependence in x1 → x0 for simplicity. 𝑓 (x) is path throughput term
and takes the following form:

𝑓 (x) = 𝑔(x)𝐺 (x), (2)

𝐺 (x) is the throughput term consisting of path transmittance, mea-
sure conversion terms and visibility terms; 𝑔(x) denotes the local
throughput function, which is the product of several bidirectional
scattering distribution function (BSDF) terms and phase function
terms. In scenes filled with homogeneous participating media with
constant relative refraction index 𝜂, the transport time for a path x
with 𝑘 vertices can be simplified to Equation (3):

𝑡 (x) = 𝜂

𝑐
∥x∥ = 𝜂

𝑐

𝑘−1∑︁
𝑖=0

∥x𝑖 − x𝑖+1∥, (3)

𝑐 represents speed of light in vacuum. Note that path length ∥x∥
has the same meaning as path time 𝑡 (x) and only differs by a scalar
scaling factor. Therefore, path length ∥x∥ and path time 𝑡 (x) will
be used interchangeably, with a slight abuse of notation.
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Equation (1) can be estimated numerically using Monte Carlo
integration. A single path with multiple vertices originating from
camera x0 is traced and each vertex is connected to the emitter,
as shown in Figure 2. The traced path, direct shadow connection
and generalized shadow connection (connection with extra control
vertices) are represented by solid black line, dashed yellow line and
dashed red lines, respectively. The transient radiance estimator for
the estimation of the integral defined by Equation (1) takes the form
of the following [Pediredla et al. 2019]:

𝐼 =
1
𝑁

𝑁∑︁
𝑛=1

𝑊 (∥x𝑛 ∥) 𝑓 (x𝑛)𝐿𝑒
𝑝 (x𝑛)

, (4)

where 𝑁 different paths x𝑛, 𝑛 = 1, 2, ..., 𝑁 are used to estimate the
pixel intensity; 𝑝 (x𝑛) denotes the sampling probability density func-
tion (PDF) to the joint distribution of x𝑛 . It can be seen that the
temporal response function𝑊 (∥x𝑛 ∥) is the only different part from
the steady-state estimator.

Fig. 2. Unidirectional path tracing in a scene filled with participating media.
Random walk generates a path (solid black lines) with multiple vertices and
all the vertices are connected to the emitter either through direct shadow
connection (dashed yellow lines) or generalized shadow connection with
control vertices (dashed red lines)

The high variance in transient radiance estimators arises pri-
marily from two factors: the omission of radiance contributions in
importance sampling, leading to less effective multiple scattering
paths, and the inefficiency in imposing path length constraints. De-
tailed variance analysis can be found in our supplementary note
(Section A.1). In Section 4, we address the first issue by using the
diffusion approximation (DA) to enhance importance sampling for
distance sampling. In Section 5, we tackle the second issue by com-
bining the ellipsoidal connection methodology with DA, improving
direction sampling and effectively imposing path length constraints.

4 Diffusion Approximated Distance Sampling

4.1 Residual Time Estimator
Different from existing methods that exhibit limited awareness of
transient radiance distribution, our method aims to construct paths
where all vertices are importance-sampled according to radiance

contribution of the specific target time intervals. Denoting target
time for the full path as𝑇𝑡 and the time taken for photons travelling
to the 𝑘-th vertex as elapsed time 𝑇e,𝑘 , the residual time 𝑇res,𝑘 for
the 𝑘-th vertex can be defined as:

𝑇res,𝑘 =𝑇𝑡 −𝑇e,𝑘 =𝑇𝑡 −
𝜂

𝑐

𝑘−1∑︁
𝑖=0

∥x𝑖 − x𝑖+1∥, (5)

We note that residual time 𝑇res is usually longer than the path time
for direct connection, and imposing path length constraints cannot
be effectively achieved through naive direct connection.

Due to the recursive nature of the path construction process, the
optimal sampling procedure at each vertex involves first importance
sampling the ray direction based on the transient radiance and then
the residual time, aiming to maximize the average radiance contri-
bution along the sampled distance. Once the direction is determined,
a free-path distance is sampled along this direction to establish a
new vertex for path connection. Since direction sampling applies
to both path construction and path connection, it will be discussed
in detail in Section 5.1. This section focuses on distance sampling
given a specific ray direction.

To simplify the mathematical representation in Equation (4), we
formulate the transient radiance estimator in a recursive form. We
decompose the incident radiance of vertex x𝑘+1 into direct and
indirect components, as depicted in Figure 3. The combination of
direct and indirect components at vertex x𝑘+1 is the indirect radiance
incident at x𝑘 before exhibiting volumetric attenuation. The incident
indirect radiance can then be defined with respect to the residual
time:

�̃�𝑘 (x𝑘 ,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘 ) =
(
𝑊 (∥x′

𝑘+1∥)𝐿𝑑 (x𝑘+1,𝑇res,𝑘+1︸                               ︷︷                               ︸
I

)+

𝑓m (𝜔𝜔𝜔𝑘 ,𝜔𝜔𝜔𝑘+1)
𝑝𝑑 (𝜔𝜔𝜔𝑘+1)

�̃�𝑘+1︸                  ︷︷                  ︸
II

)
𝜎𝑠 exp(−𝜎𝑒𝑑𝑘 )

𝑝𝑡 (𝑑𝑘 )
,𝑇res,𝑘 =𝑇res,𝑘+1 +

𝜂

𝑐
𝑑𝑘 ,

(6)
x′
𝑘+1 denotes a path where the complete sensor-to-emitter path is
formed by connecting vertex x𝑘+1 to x𝑒 , possibly via intermedi-
ate vertices. 𝜎𝑠 , 𝜎𝑒 denotes scattering and extinction coefficients,
respectively. −𝜔𝜔𝜔𝑘+1 denotes the exiting direction at x𝑘+1, and the
sampling method of this direction will be discussed in Section 5.1.
Part (I) in Equation (6) is the exiting direct radiance at vertex x𝑘+1,
and here we use word direct to denote connection paths produced by
sampling control vertices before the sampled emitter, with a slight
abuse of notation. Given the path length target𝑇𝑡 , valid sample must
have 𝑇res,𝑘+1 as ToF to account for elapsed time of x𝑘 and transport
time for distance 𝑑𝑘 . Likewise, for the indirect incident radiance
�̃�𝑘+1 in part (II), radiance sample with subsequent scattering should
be able to satisfy the path length constraint, therefore it should have
𝑇res,𝑘+1 as ToF as well. As �̃�𝑘+1 is sampled in scattering direction,
the Monte Carlo term is applied to convert it to estimated exiting
radiance. All components will be attenuated due to scattering and
absorption within the transport distance 𝑑𝑘 produced by free-path
distance sampling.
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Since both direct and indirect component have the same time
𝑇res,𝑘+1, Equation (6) can be compressed to a unified residual time
radiance representation that encompasses both direct and indirect
components as 𝐿′, as shown in Figure 3:

�̃�𝑘 (x𝑘 ,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘 ) =
𝜎𝑠 exp(−𝜎𝑒𝑑𝑘 )𝐿′ (x𝑘+1,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘+1)

𝑝𝑡 (𝑑𝑘 )
,

(7)
To achieve low variance estimation, we need to find a sampling
distribution whose PDF takes the following form:

𝑝𝑡 (𝑑𝑘 ) =
𝜎𝑠 exp(−𝜎𝑒𝑑𝑘 )𝐿′ (x𝑘+1,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘+1)

𝑍
, (8)

where 𝑍 is the normalizing constant. The key point then comes
down to sample the full paths according to the attenuated transient
radiance exp(−𝜎𝑒𝑑𝑘 )𝐿′ (x𝑘+1,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘+1), in order to calculate
the next vertex position x𝑘+1. Equation (8) underscores the intuition
behind using the unified residual time in Equation (7): sampling
should be concentrated in areas where the combined direct and
indirect components are substantial.

Fig. 3. Recursive decomposition of indirect radiance �̃�𝑘 into the direct and
indirect components. Through this decomposition, the estimator can actu-
ally be written as the summation of an infinite series of direct component
at each vertex. This decomposition is easier to discuss, since it only depicts
the local state transition.

4.2 Diffusion Approximated Sampling PDF
To approximate adjoint transport solution 𝐿′ (x𝑘+1,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘+1),
we introduce the transient diffusion equation (DE) into the approxi-
mation of transient radiance. The radiant flux solution Φ(x,𝑇 ) of DE
in an infinite homogeneous scattering medium satisfying 𝜎𝑠 ≫ 𝜎𝑎
[Contini et al. 1997] is given by :

Φ(x,𝑇 ) = 𝑐𝐻 (𝑇 − 𝜏)[
4𝜋𝑐𝐷 (𝑇 − 𝜏)

]3/2 exp(− ∥x − x𝑒 ∥2
4𝑐𝐷 (𝑇 − 𝜏) − 𝜎𝑎𝑐 (𝑇 − 𝜏)),

where 𝐷 =
1

3(𝜎𝑎 + 𝜎𝑠 (1 − 𝑔)) ,
(9)

𝜏 is the time point when the delta wavefront is emitted; x and 𝑇
denotes the position and time point to be evaluated, respectively; 𝑔
is the anisotropic coefficient of Henyey-Greenstein phase function,
and is used to compute the reduced scattering coefficient 𝐷 [Lister
et al. 2012]; 𝐻 (·) is the Heaviside step function which prevents
non-causality. This solution can be used to evaluate approximated
radiance with specific residual time. Note that Equation (9) doesn’t
account for the direction information, therefore, the the directed

radiance is approximated based on the radiant flux 𝜙 (x,𝑇 ) without
direction information.
The above yields part of the distance sampling PDF, and trans-

mittance is accounted for additionally. This would approximate the
transient radiance emitted from the emitter, scattered in the medium
(approximated transient radiance) and get attenuated from the sam-
pled position to the ray starting position (transmittance). Therefore,
the distance sampling PDF takes the following form:

𝑝𝑡 (𝑑𝑘 ) =

transmittance︷            ︸︸            ︷
𝜎𝑒 exp(−𝜎𝑒𝑑𝑘 )

flux approximated transient radiance︷                              ︸︸                              ︷
Φ(x𝑘 + 𝝎𝑘𝑑𝑘 ,𝑇res,𝑘 − 𝜂

𝑐
𝑑𝑘 )

𝑍𝑘
, (10)

𝑍𝑘 is the normalization constant. Substitute (10) into (7), we have:

�̃�𝑘 (x𝑘 ,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘 ) =
𝐿′ (x𝑘+1,−𝜔𝜔𝜔𝑘+1,𝑇res,𝑘+1)
Φ(x𝑘 +𝜔𝜔𝜔𝑘𝑑𝑘 ,𝑇res,𝑘 − 𝜂

𝑐 𝑑𝑘 )︸                               ︷︷                               ︸
variance inducing

𝜎𝑠𝑍𝑘

𝜎𝑒
, (11)

It can be seen that the denominator of the variance inducing term
in Equation (11) is the approximation to the directionally integrated
numerator, given the physical meaning of radiant flux. Also, it has
been proved that when 𝜎𝑠 ≫ 𝜎𝑎 [Contini et al. 1997], DA can
accurately describe the radiant flux distribution and the radiance
will be distributed uniformly in terms of direction, thus enabling the
flux approximation for radiance. In this case, the variance inducing
part can be regarded as a constant. Therefore, the proposed sampling
approach achieves much lower variance compared to the existing
methods while simultaneously incorporating path time information.

4.3 Sample Generation
Unfortunately, the PDF given by Equation (10) can not be analyti-
cally integrated due to its mathematical complexity, which makes
analytical inverse sampling infeasible. Therefore, we generate sam-
ples according to Equation (10) via resampled importance sampling
(RIS) [Talbot 2005]. The sample generation process is as follows:

4.3.1 Scattering event sampling. Since PDF in Equation (10) is ac-
tually conditioned on scattering events, we start by sampling the
scattering events using exponential sampling. For a given ray, if the
maximum travelling distance before hitting an opaque surface is
𝑑𝑚 , the probability for medium scattering event can be given by:

𝑝𝑚 := 𝑃 (𝑑𝑘 < 𝑑𝑚) =
∫ 𝑑𝑚

0
𝜎𝑒 exp(−𝜎𝑒𝑡)𝑑𝑡 = 1 − exp(−𝜎𝑒𝑑𝑚),

(12)
The sampled scattering event can then be defined by a Bernoulli
distribution Bern(𝑝𝑚) and can be decided by sampling from this dis-
tribution. DA distance sampling will be used if the current scattering
event is sampled as a medium event.

4.3.2 Candidate sample generation. For medium scattering events,
distance samples can be obtained through Equation (10) via RIS.
We use truncated exponential distribution as our candidate distri-
bution, since the local radiance transport is largely influenced by
transmittance. Although other sampling methods such as equian-
gular sampling [Kulla and Fajardo 2012] have been considered as
proposals, they are found to be less effective (See supplementary
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(a) Illustration for DA distance sampling (b) Illustration for 1D radiance distribution

Fig. 4. Illustration of DA distance sampling. Samples are drawn with statistically higher contribution according to product of transmittance and approximated
transient radiance: 4 candidate samples 𝑑𝑖 are depicted in (a). 𝑑1 and 𝑑4 are invalid. Though 𝑑2 has higher transmittance, the incident contribution on vertex
x𝑘 is lower than that of 𝑑3, due having lower estimated radiance. Note that 𝑑4 is not presented in (b), since it is invalid due to non-causality.

note Figure VII). The candidate sampling distribution in RIS takes
the following form:

𝑝candidate (𝑑𝑘 |𝑑𝑘 < 𝑑𝑚) = 𝜎𝑒 exp(−𝜎𝑒𝑑𝑘 )
𝑝𝑐

, 𝑑𝑘 ∈ [0, 𝑑𝑚), (13)

𝑑𝑘 = log (1 − 𝑝𝑐𝜖) /𝜎𝑒 , 𝜖 ∼ 𝑈 [0, 1), 𝑝𝑐 = 1 − exp(−𝜎𝑒𝑑𝑚) (14)

4.3.3 Evaluating transient DE and transmittance. Then, the sampled
candidates are used to evaluate the RIS weights. After sampling
according to the RIS weights, we can get the following estimator
for the transmittance:

𝐼 (𝑑𝑘 ) =
exp(−𝜎𝑒𝑑𝑘 )
𝑝 (𝑑𝑘 )𝑁RIS

𝑁RIS∑︁
𝑖=1

𝑤 (𝑑𝑘 ),𝑤 (𝑑𝑘 ) =
𝑝 (𝑑𝑘 )

𝑝candidate (𝑑𝑘 )
, (15)

𝑝 (𝑑𝑘 ) is the denominator of Equation 10. The number of candidates
𝑁RIS is chosen to be the power of 2, and we use 8 to balance SIMD
vectorization efficiency and output quality through out our imple-
mentation. To further enhance resampling efficiency, we propose to
randomly sample one row from a pre-computed table (32 by 8) of
Sobol sequence, then randomly offset each element in the sampled
row by a uniformly distributed factor 𝜖0 before the modulo opera-
tion into [0, 1) range. Pre-computed Sobol sequence prevents the
clustering of candidate samples. It also maintains good randomness
and low correlation, while reducing the heavy computational load in-
duced by Sobol sampler state updates. The RIS procedure employed
eliminates the resolution-quality trade-off of tabulated sampling
while remaining memory-efficient and can be further improved by
reservoir resampling [Bitterli et al. 2020].
We provide an intuitive illustration in Figure 4 with 4 candidate

distance samples 𝑑𝑖 , 𝑖 = 1, 2, 3, 4. Note that x𝑘,𝑖 in the figure are all
candidate samples, the actual vertex for the 𝑘-th scattering event
will be resampled from them. Since the sum of 𝑇res and the sam-
pling time 𝑇𝑖 should be the given target time 𝑇𝑡 , a longer sampling
distance results in less propagation time (see x𝑘,3 and the tangerine
wavefront of𝑇res3), and vice versa (see x𝑘,1 and the scarlet wavefront
of 𝑇res1). The sample with a higher product value of transmittance

and approximated transient radiance is more likely to be resampled.
Note that 𝑑1 and 𝑑4 are invalid since x𝑘,1 is out of the wavefront
range and x𝑘,4 results in negative residual time. The weights of both
samples are set to zero. In rare cases, if all candidates are invalid,
this sampling approach will degrade to naive exponential sampling.
The detection of invalid samples will be discussed in Section 5.2.

5 Elliptical Diffusion Approximated Sampling
In addition to free-path distance sampling, efficient transient ren-
dering requires both effective direction sampling and precise path
length control strategies. The complete path length control process
involves sampling an additional vertex xell ∈ R3 by first sampling a
direction𝜔𝜔𝜔 from the current vertex x𝑘 , followed by sampling the
distance 𝑡 according to path length constraints. This procedure can
be expressed through a conditional probability decomposition:

𝑝 (xell) = 𝑝 (x𝑘 +𝜔𝜔𝜔𝑡) → 𝑝 (𝜔𝜔𝜔, 𝑡 |x𝑘 ) = 𝑝 (𝑡 |𝜔𝜔𝜔, x𝑘 )𝑝 (𝜔𝜔𝜔 |x𝑘 ), (16)

In this section, we introduce a novel direction sampling method that
integrates elliptical path length control with diffusion approxima-
tion, which refines the probability distribution function 𝑝 (𝜔𝜔𝜔 |x𝑘 ) to
achieve lower variance. For the conditional distribution 𝑝 (𝑡 |𝜔𝜔𝜔, x𝑘 ),
we extend ellipsoidal connection method proposed by Pediredla et
al.[2019] to volumetric media, which we refer to as elliptical sam-
pling. The combination of these two complementary strategies is
termed elliptical diffusion approximated (EDA) sampling.

5.1 EDA Direction Sampling
The radiant flux in DA employs first-order spherical harmonic ap-
proximation and integrates direction away. We then opt for approxi-
mation that can capture direction information of transient radiance.
Before starting a new path sample, a time interval will be sam-

pled (deterministic for time-gated rendering) as the interval for
target path time, denoted as [𝑇𝑡,𝑚,𝑇𝑡,𝑀 ). The minimum and max-
imum residual time range are given by 𝑇res,𝑚 = 𝑇𝑡,𝑚 − 𝑇𝑒,𝑘 and
𝑇res,𝑀 = 𝑇𝑡,𝑀 − 𝑇𝑒,𝑘 , respectively, where 𝑇𝑒,𝑘 is the elapsed time
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(a) EDA direction sampling tabulation (b) Two cases for elliptical sampling

Fig. 5. Two major sampling procedures in EDA sampling. The offline tabulation yields a 3D table for any vertex to query. This table is used for inverse transform
sampling. Each value in the table is estimated via Monte Carlo integration on GPU (a). Two possible elliptical sampling cases: the equi-time ellipse does not
intersect any surfaces (case I, left half); surface is encountered within the sampling range (case II, right half) (b)

of the path. Importance sampling requires direction sampling to
obtain scattering direction that generates radiance samples (1) with
high contribution and (2) with the ToF ranging [𝑇res,𝑚,𝑇res,𝑀 ). Since
the upper bound of the residual time at 𝑘-th vertex is 𝑇res,𝑀 , for
any given direction, the next scattering vertex must reside in an
ellipsoid defined by the current vertex, target emitter vertex and
residual time, as the next path vertex outside of this ellipsoid will
result in longer paths than required. Therefore, we approximate the
incident radiance within the ellipse in direction −𝜔𝜔𝜔 by the following
equation:

𝐿𝑖 (x𝑘 ,−𝜔𝜔𝜔,𝑇 ) = 𝜎𝑠

∫ 𝑡𝑀

0
exp(−𝜎𝑒𝑡)𝐿𝑜 (x𝑘 +𝜔𝜔𝜔𝑡,−𝜔𝜔𝜔,𝑇 − 𝜂

𝑐
𝑡)𝑑𝑡

(17)

≈ 𝜎𝑠

∫ 𝑡𝑀

0
exp(−𝜎𝑒𝑡)Φ(x𝑘 +𝜔𝜔𝜔𝑘𝑡,𝑇 − 𝜂

𝑐
𝑡)𝑑𝑡 (18)

As shown in Equation (18), 𝐿𝑜 can also be approximated by radiant
flux introduced in Equation (9). Therefore, if the approximation
is sufficiently accurate, we can effectively obtain the volumetric
incident radiance from any given direction and for any specific ToF
using the convolution of transmittance and DA within an ellipsoid.
𝑡𝑀 denotes the polar distance given 𝑐𝑇 /𝜂 as the path length, which
can be calculated deterministically:

𝑡𝑀 (cos𝜃 ) = 𝑆2 −𝐶2

2𝑆 − 2𝐶 cos𝜃
, 𝑆 =

𝑐𝑇

𝜇
, (19)

where𝐶 is the focal distance between two vertices being connected;
𝑆 denotes the length sum of the connection paths; 𝜃 is the angle
between the sampled direction𝜔𝜔𝜔 and the major axis vector of the
ellipsoid.
Unfortunately, the integral in Equation (18) has no analytical

form. In order to draw direction samples from approximated inci-
dent radiance, we tabulate Equation (18) by a 3D table. As shown
in Figure 5 (a), the first two dimensions, 𝐶/𝑆 and 𝑆 are tabulated
for conditioning, since 𝐶 (distance to target) and 𝑆 (residual time)
determine the shape of the ellipsoid, and are known for the given
vertex. The resulting direction sampling PDF is conditioned on the

two parameters that will be online-queried. We use 𝐶/𝑆 instead of
𝐶 for the first dimension since the former is bounded in [0, 1). The
third dimension is the angular dimension used for inverse transform
sampling. Note that cos𝜃 sampled by our method is the cosine value
for the angle between sampled direction and ellipsoid major axis.
Interval [−1, 1] is uniformly subdivided into 256 bins, and for each
bin, we evaluate Equation (18) via Monte Carlo integration. The 𝜙
angle is considered isotropic and sampled uniformly in [−𝜋, 𝜋) on
the tangent plane defined by the major axis. Therefore, tabulation
is evaluated in a 2D ellipse instead of a 3D ellipsoid. Thus we refer
to this method as elliptical DA instead of ellipsoidal.
The tabulation is calculated offline and parallel computation is

straightforward. Our offline tabulation only takes around 5 seconds
on a single consumer-end GPU and therefore the time overhead
is negligible (refer to Section B.3 in supplementary note for more
detail). Since we choose to sample cos𝜃 and 𝜙 , the measure of the
sampling PDF is mathematically equivalent to solid angle measure,
and can thus be directly combined with phase function sampling
via one-sample-model MIS [Veach 1998] with balance heuristic. In
our implementation, we choose the following adaptive parameter
to decide when to use the proposed sampling method:

𝛾 =
𝐶/𝑆

𝐶/𝑆 + 𝛼
∈ [0, 1], 𝛼 ≥ 0, (20)

where 𝛼 is a parameter that controls the preference over proposed
sampling, and we usually choose 0.5 for experiment. 𝛾 defines the
probability of choosing the proposed method, and it is adaptive to
the shape of the ellipse: when the ellipse resembles a circle (as 𝐶/𝑆
is close to 0, when bounce count is low), phase function sampling is
preferred; as the ellipse flattens after simulating multiple scattering,
the proposed sampling is preferred.
To our knowledge, existing work does not importance-sample

transient radiance contributions for paths of a given length. In
contrast, our DA distance sampling and EDA direction sampling
methods effectively address this challenge.
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5.2 Elliptical Sampling
For path length control, we adapt the ellipsoidal connection method
proposed by Pediredla et al. [2019] to sample a control vertex in par-
ticipating media. However, their reparameterization method, which
is based on the polygon around the center of the (projected) ellip-
soid,cannot be directly applied in participatingmedia. This approach
also hinders importance sampling and direction reuse, as the PDF
of the control vertex xell cannot be represented by Equation (16). To
address these problems, We introduce a new parameterization that
enables efficient sampling in scattering media and supports both
importance sampling and direction reuse.
We propose parameterizing the sampling space around the cur-

rent path vertex (focal point) in the polar coordinate system, which
enables the decomposition in Equation (16). This representation
simplifies sampling difficulty by breaking it down into the prod-
uct of two conditional probabilities: one defined by a 1D distance
measure and the other by a solid angle measure. In this case,xell
(the red dot in Figure 5 (b)) can be sampled from a 2D elliptical ring
in the media, given the residual time range [𝑇res,𝑚,𝑇res,𝑀 ). First, a
direction 𝜔𝜔𝜔 is sampled using the method in Section 5.1, and then
a polar distance 𝑡 is sampled. Note that the scattering direction𝜔𝜔𝜔
generated by EDA sampling is reused for this process. Consequently,
the next path vertex x𝑘+1, the sampled vertexxell and the current
vertex x𝑘 lie on the same line. This alignment allows us to reuse
ray-scene intersection results, significantly reducing rendering time
in scenes with high triangle counts.

The sampling of distance 𝑡 entails two primary scenarios, depend-
ing on whether the surface interaction is considered. In the case
where the elliptical ring does not intersect any surface in the given
direction, the 𝑡 sample depicted in the left half (case I) in Figure 5
(b), can be generated by the following equation:

𝑡 =
𝑆2 −𝐶2

2𝑆 − 2𝐶 cos𝜃
, 𝑆 ∼ 𝑃 [𝑆𝑚, 𝑆𝑀 ), 𝑆𝑚 =

𝑐𝑇res,𝑚
𝜂

, 𝑆𝑀 =
𝑐𝑇res,𝑀

𝜂
(21)

Truncated exponential distribution is used for sampling distribution
𝑃 , which truncates exponential distribution in [0, 𝑆𝑀 − 𝑆𝑚). Note
that if uniform distribution is used for 𝑃 , this sampling method
will degrade to one of the sampling method proposed by Jarabo
et al. [2014], yet their purpose is to uniformly distribute path ver-
tices. However, since the transmittance for the connection path is
exp(−𝜎𝑒𝑆), the truncated exponential distribution favors paths with
higher overall transmittance, leading to more samples with lower 𝑆
values. This aligns with our goal of importance sampling based on
overall radiance contribution. The sampling PDF takes the form as
Equation (22), and full derivation can be found in supplementary
note (Section A.2).

𝑝 (𝑡) = 𝑝 (𝑆)
(
𝑑𝑡

𝑑𝑆

)−1
=

𝜂 (𝑆 − 𝑡)𝜎𝑒 exp(−𝜎𝑒 (𝑆 − 𝑆𝑚))
𝑐 (𝑆 −𝐶 cos𝜃 ) (1 − exp(−𝜎𝑒 (𝑆𝑀 − 𝑆𝑚)) ,

(22)
The other case involves surface events within sampling range, as
shown in the right half (case II) Figure 5 (b). The detection for
this case is performed by comparing the closest surface distance
𝑡𝑠 with the polar distance 𝑡𝑀 concerning the ellipse defined by
𝑆𝑀 . Since sampling beyond surfaces is not feasible, we first sample
scattering events as in Section 4.3, with 𝑝𝑚 = 𝑡vol/(𝑡vol + 𝑡surf). For

a surface event, we directly output 𝑡𝑠 , while for a medium event,
elliptical sampling is employed and the upper bound for 𝑆 is updated
according to 𝑡𝑠 .

(a) histogram comparison (b) rendering comparison

Fig. 6. Importance sampling temporal response function. We record full
path samples in a temporal histogram during rendering. Histogram (a)
shows that the baseline sampling method struggles to generate path sam-
ples in time intervals with higher sensor response weights, in contrast to
the proposed sampling method. Consequently, the baseline sampling ap-
proach generates a substantial number of path samples with little overall
contribution, resulting in considerably noisier rendered output (b, left half).
The temporal response weight comprises two peaks, and two brighter rings
are noticeable in the rendered image (b), one on the floor and the other on
the wall.

We summarize the abilities of our elliptical sampling method:
first, it is able to get the upper bound for distance samples for any
residual time via Equation (21), which helps to identify non-causal
samples mentioned in Section 4.3; second, the upper bound can also
be used for the early identification of paths exceeding the target time
range, leading to earlier exit for the path construction and further
accelerate rendering by around 1.5 times. Also, its path length con-
trol ability can prevent sample rejection caused by𝑊 (∥x∥), given
the time interval to be sampled from. We present an example of
importance-sampling a known 𝑊 (∥x∥) with two peaks. The re-
sults presented in Figure 6 verify the effectiveness of the proposed
method: the two peaks of𝑊 (∥x∥) are depicted with dashed line in
Figure 6(a). The baseline method refers to the direct ToF extension
of steady state method. Since the baseline sampling method relies
on direct shadow connection, it fails to generate samples falling
within the regions with high weights, resulting in a significant
portion of samples (85.31%) being rejected due to zero weight. In
contrast, our method is able to capture the shape of the response
weight and thus avoids sample rejection (<3%). The rendering out-
put in Figure 6(b), which contains two bright rings, shows that our
method significantly improves rendering quality. We also provide a
proof regarding the optimality of the proposed path control in our
supplementary note (Section A.3).

6 Results and Evaluation
We compare the proposed method with path tracing (PT) [Jarabo
et al. 2014] and the photon based methods [Liu et al. 2022; Marco
et al. 2019], which are the state-of-the-art methods in ToF rendering.
All the photon based methods being compared are progressive. We
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Fig. 7. Time-gated rendering experiments. For each scene, we present the time-gated images rendered by five different methods (organized by column) in two
different time intervals (shorter and longer target path lengths). Each image will have two selected areas displayed in magnified views. For original and the
proposed methods, we use 6k SPP to render each image and the photon based methods have rendering time equal to the proposed method. We set the MSE of
our DARTS PT to be 1, and MSE relative ratios and rendering time are displayed on the top right of each image. The best statistics (row-wise) are highlighted
in red. The leftmost texts describe the time point and the corresponding interval center of the rendered images. The original outputs are in HDR format, we
therefore normalize the images with their 0.99 quantiles and clamp the output to [0, 1]. It can be seen that our DARTS PT (4th column) and DARTS photon
points (5th column) methods have greatly improved rendering quality. Notably, photon points equipped with DARTS can achieve noise-free rendering with no
obvious visual artifacts.
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(a) pixel patch position (b) PT method comparison (same 80k SPP) (c) PP method comparison (same time, 1h)

Fig. 8. Transient rendering experiments. We present the transient curve produced by taking the average of the 6 × 6 pixel patch in (a). The error distribution
curves are smoothed with spline interpolation. Equal-SPP comparison between the baseline renderer and our DARTS based one is given in (b), with the
rendering time given in the graph legend. Equal-time (1h) comparison between baseline photon based methods and our DARTS based photon point is given in
(c). Both curves show that DARTS is able to reduce the asymptotic variance and improve the rendering quality.

Table 1. Properties of the test scenes. Note that scattering intensity is mea-
sured by the camera-to-emitter transport mean-free-path (TMFP) distance.
Higher value means more expected scattering events along the distance.

Properties \ Scenes GLOSSY DRAGON STAIRCASE [Bitterli 2016b]

Triangle Count 87k 262k
PT rendering time Equal to that of DARTS PT Equal to that of DARTS PT
Scattering intensity* 3.2 TMFP 4.3 TMFP
Surface material glossy / specular reflection plastic coated material

present time-gated rendering and transient rendering experiments
in Section 6.1 and 6.2, respectively. Additionally, we provide nu-
merical results in Section 6.3 to demonstrate the stability of our
algorithm under various scene and sensor settings. We implement
our sampling method in the unidirectional PT of pbrt-v3 [Pharr
et al. 2023], photon points and photon beams (PP and PB for short,
respectively) methods of Tungsten [Bitterli 2018]. These renderers
are verified to converge to the same results with correct settings and
code adjustments (Section B.1 of our supplementary note). Unlike
other works that mostly focus on volumetric transport and low or-
der scattering, our experiment setup enables full transport and great
maximum allowed depth (such as 200 bounces). All the experiments
are done on 112-core Intel Xeon Platinum 8280 CPU@2.60GHz with
104 threads. GPU used for tabulation is Titan RTX. We also run
the rendering to converged state to ensure that DARTS remains
unbiased and consistent. All rendered HDR images are in the linear
RGB color space unless stated otherwise. The reference images are
produced by path tracing method.

6.1 Time-gated Rendering
In Figure 7, we compare our DARTS based renderer with: (1) A
unidirectional path tracing version of the methods proposed by
Jarabo et al. [2014], which is referred to as uniform-time PT below.
(2) 1D progressive transient photon beam method [Marco et al.
2019] reproduced by Liu et al.[2022] (3) Progressive photon point
(point-beam 2D, [Křivánek et al. 2014]) implemented by Liu et al.
[2022]. The proposed path sampling method is tested both on PT
(denoted by DARTS PT) and photon based method (DARTS photon

points, PP for short). For each scene, two time intervals (shorter
and longer target path lengths) are rendered and presented as the
first and the second row of the related scene, respectively. Note
that the estimators proposed by Liu et al. [2022] produce results
inferior to those listed above in camera-warped and full transport
settings, and some of them needs mathematical corrections to work
under camera-warped settings, which is out of this paper’s scope
and are not included (see Figure X in the supplementary note).
The methods proposed by Jarabo et al. [2014] is modified to fit the
unidirectional path tracing (see Section B.4 in our supplementary
note for more detail). The presented images are normalized with
their 0.99 quantile numbers. In the following, we mainly provide
two scenes for comparison. More scenes and results can be found
in our supplementary note, interactive local web-viewer and video.

Some of the important properties of the two test scenes: GLOSSY
DRAGON (first two rows of Figure 7) and STAIRCASE [Bitterli
2016a] (last two rows of Figure 7) are listed in Table 1. Both vol-
umetric scenes feature complex geometries and surface transport
properties. The pulsed point emitters in each scene are not within
the direct line-of-sight. We render the scene with 6k SPP for DARTS
PT, and the compared methods employ the same rendering time as
DARTS PT. Quantitative results presented in Figure 7 are normalized
by the MSE of DARTS PT results.
It is evident that our DARTS PT significantly outperforms the

uniform-time PT in output quality, reducing MSE metrics by about 2-
4 times. Moreover, DARTS PT can already outperform photon based
methods in most scenes due to its bias-free nature, while DARTS
PP further increased the gap between our methods and the com-
pared methods. We also observe that, though progressive method is
employed, rendering under a fixed time budget and accounting for
full transport introduces bias that proves challenging to mitigate,
even with extensive parameter tuning. This challenge is particularly
pronounced in the case of the photon beams method, leading to no-
ticeable visual artifacts and a performance drop. With our sampling
method, photon based methods can adopt lower photon counts per
sample to achieve higher SPP and the parameters are easier to tune,
and thus have better convergence.
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6.2 Transient Rendering
Our method is better suited for time-gated rendering where tem-
poral path reuse [Jarabo et al. 2014] isn’t employed, but we still
report performance improvements in transient rendering using our
proposed methods. Similar to time-gated rendering, we compare
PT and PP with our sampling method against their baseline coun-
terparts and baseline photon beams. Here we present comparison
experiment for STAIRCASE scene. Each frame has the same tempo-
ral width as time-gated experiments and 40 frames instead of only
1 frame are rendered. Since it is generally challenging for PT to
produce transient images with low variance, here we compare path
tracing methods (rendered with 80k SPP) and photon based method
(rendered for the same time, 1h) differently. The transient curve
from a 6× 6 pixel patch shown in Figure 8(a) is presented. The error
distribution of the PT method is presented in Figure 8(b), whereas
the error distribution of the photon-based method is depicted in
Figure 8(c).

The results presented in Figure 8 show that compared to baseline
methods, the proposed method is able to improve the rendering qual-
ity with significantly less rendering time. However, photon based
methods outperform path tracing based renderer with the proposed
sampling methods, due to the utilization of temporal path reuse and
spatial-temporal blurring (rectangle kernel for temporal blurring).
We further test the photon points methods with our proposed sam-
pling methods, observing improvements in both rendering quality
and rendering speed.
The reduction in rendering time is achieved by eliminating tem-

poral path reuse: the proposed method constructs paths and con-
nections for a specific frame, and the subsequent random walk are
terminated once the path time exceeds the duration of that specified
frame, thus requiring fewer overall bounces. The rendering quality
is improved due to the ability of importance-sampling the whole
path according to transient radiance contribution. Besides, the pro-
posed methods are able to uniformly distribute the path samples
in time-domain, similar to the work of Jarabo et al.’s [2014] but in
a different way: our work is able to place equal number of path
samples in each frame (statistically, regardless of visibility term)
and our constructed path is not reused across frames but dedicated
to a single frame instead. Thus, our path samples do not need to
compromise among all the frames.

6.3 Parametric Variation and Further Comparisons
In the following, we mainly discuss the performance of our method
under different scattering coefficient 𝜎𝑠 , temporal gate width and
total rendering time. This section concludes with an ablation study
of our sampling method in the CORNELL BOX scene. Unless other-
wise specified, all subsequent experiments employ 2k SPP for PT,
while photon-based methods adhere to the same rendering time as
DARTS PT. Rendered figures are available in the supplementary
note and our interactive local web-viewer.

6.3.1 Scattering coefficient. For both GLOSSY DRAGON and STAIR-
CASE scene, we employ six different 𝜎𝑠 settings, ranging from low-
order to high-order scattering. In each scene, we select the same
two time intervals as in the time-gated rendering experiments for
rendering, and 30 images are rendered to calculate MSE. For the sake

of clarity, we convert the scattering coefficient to TMFP values for
path length of the corresponding time interval. To obtain reasonable
outputs, all photon-based methods require parameter tuning for
different scattering coefficients. In the following figures, we present
the comparison results in two above-mentioned scenes. It can be
seen from Figure 9 that our DARTS PT maintains lower variance
compared to both baseline PT and photon-basedmethods, exhibiting
greater stability when the scattering coefficient varies. Meanwhile,
DARTS PP gradually gains its superiority as the scattering media
get denser but in thin scattering media, its performance is inferior to
path tracing methods, due to the surface transport. Compared with
the experiments presented in Section 6.1, photon-based methods
employ less rendering time, leading to fewer SPP, which can impact
progressive rendering and result in a performance drop.

(a) GLOSSY DRAGON time point 1 (b) GLOSSY DRAGON time point 2

(c) STAIRCASE time point 1 (d) STAIRCASE time point 2

Fig. 9. Scattering coefficient & MSE relationship curves. Curves depicting
the relationship between scattering coefficient (converted to TMFP) and
MSE are presented. The first and the second row are obtained from GLOSSY
DRAGON and STAIRCASE scene, respectively. Note that multiple scattering
at higher 𝜎𝑠 values contributes to an overall decrease in signal amplitude
and, consequently, a reduction in MSE. To account for this, we normalize
the rendered results using the 0.95 quantile before MSE calculation.

6.3.2 Temporal gate width. Here we present the gate width experi-
ments in the STAIRCASE scene. Six gate widths are selected, ranging
from a narrow delta-function-like gate to a wide steady-state-like
gate. Likewise, the gate width Δ𝑇 is converted into a ratio with
the mean free path (MFP) of the scene. The scene settings align
with those of time-gated experiments described in Section 6.1. The
curves are given in Figure 10. We can observe that for wider time
gates, as the setup more closely resembles steady-state rendering,
the advantages of DARTS PT in time-resolved sampling are less
observable over path tracing methods. Therefore, the gap between
the DARTS PT and photon points methods is gradually narrowing.
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(a) STAIRCASE time point 1 (b) STAIRCASE time point 2

Fig. 10. Temporal gate width & MSE relationship curves. The test scene is
STAIRCASE scene and the outputs are also normalized with 0.95 quantile.
Our proposed method is seen to be stable across different settings.

6.3.3 Numerical convergence. A straightforward numerical conver-
gence analysis is depicted in Figure 11, where different SPP settings
(scaled by a factor of ten) are employed to render the the first time
point of both GLOSSY DRAGON and STAIRCASE scenes. For pho-
ton based methods, we have rendered the scenes with rendering
time equivalent to DARTS PT. The result shows that: for PT meth-
ods, the proposed path sampling method is able to improve the MSE
convergence by at least an order of magnitude in this scene; for
photon based method, the convergence for fewer-sample cases are
significantly improved, whereas as the SPP increases, the improve-
ment is less significant and the performance can even be inferior
to DARTS PT. This is caused by the inherent bias of photon based
methods, which is difficult to eliminate, even though the methods
are progressive.

(a) GLOSSY DRAGON time point 1 (b) STAIRCASE time point 1

Fig. 11. Numerical convergence curve. We compare the proposed method
with baselinemethod and photon basedmethods under several different SPP
(thus, rendering time) settings in both scenes. Both SPP (for path tracing
methods) and rendering time (for both path tracing and photon based
methods) are presented in the x-axis labels. Note that baseline PT uses the
same number of SPP as DARTS PT, and the baseline PT takes approximately
1.5 times longer to render compared to DARTS PT.

6.3.4 Ablation study. Our proposed sampling method consists of
two parts: DA distance sampling and EDA sampling. We validate the
ability of these parts in improving rendering quality through several
strategies: baseline renderer, the renderer with only partial part or
one of the proposed methods and the renderer with both methods

enabled. Here we use amodified version of the CORNELL BOX scene
with a pulsed point source. The scene is rendered under various
scene settings such as different scattering coefficients and temporal
gate widths. Both qualitative and quantitative results under one
example setting are presented in Figure 12. It is evident that the
collaborative utilization of proposedmethods substantially improves
rendering quality. For additional results of other settings, one can
refer to our supplementary materials (Figure III in Section C.1).

7 Discussion and Limitations
In summary, we have proposed a novel path sampling method
to improve the overall quality of ToF rendering tasks. The pro-
posed method is derived based on diffusion approximation in ho-
mogeneous scattering media and its Monte Carlo integration in
a residual-time-defined ellipse, together with the non-trivial ex-
tension of ellipsoidal connection that can be directly applied for
scattering media. Our experiments demonstrate that the proposed
method is able to improve rendering quality and efficiency in both
path tracing and photon-based methods. Moreover, the improved
path tracing method performs comparably to, and in some cases sur-
passes, photon-based methods in scenes with scattering media and
complex surface properties. We anticipate that our work will con-
tribute to the simulation of increasingly sophisticated ToF sensors
in the field of optics and sensing.

In the following, we first discuss the implementation differences
of the proposed method in different frameworks, and then provide
the limitations and the future avenues for this work.

Implementation differences in different frameworks. The previous
derivationsmainly stem fromPT framework.While the samemethod-
ology can be applied to photon-based method, we do highlight two
major differences in implementation: (1) DA distance sampling and
EDA sampling are only used in photon pass, and the camera will be
considered as a virtual importon [Vorba et al. 2014] emitter, while
in PT, since the path starts from the camera, the real emitter is used.
(2) In photon based methods, we cache the control vertex in the
photon map and leave the gathering for the sensor pass, while in
PT, a generalized shadow connection will be made to evaluate the
radiance immediately after sampling a control vertex. For detailed
explanation of the differences in implementation, one can refer to
Section B.2 in our supplementary note.

7.1 Limitations & Future Avenues
7.1.1 Emitter & phase function types. The emitter in our theoretical
derivation is assumed to be a point emitter. We employ two types
of emitters in the experiments: point emitters and spot emitters.
The latter is employed in photon-based methods, where the camera
acts as a spot emitter of importons. For more complex emitters, for
example, collimated emitters can be handled by sampling single
scattering events and treating each scattering vertex as a virtual
point emitter, while the area emitters can be approached by point
sampling, with each sample considered as an equivalent spot emitter.
The phase function employed is currently assumed to be Henyey-
Greenstein phase function, yet we note that our method might be
extended to phase functions that have diffusion approximation, such
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(a) baseline Method (b) DA distance sampling (c) Elliptical sampling (d) EDA sampling (e) Full DARTS

Fig. 12. Ablation study: an example case. Comparison between DARTS and four alternative strategies is presented under the same rendering time settings. The
images shown above are synthesized by averaging 40 images (totaling 30 min for each case), with the reference being rendered for 4.5h. Images shown are
normalized by their 0.99 quantile. We normalize all the MSE results by the MSE of images produced by DARTS. In each image, the left half is the reference and
the right half employs strategies as indicated by the sub-captions. The proposed method results in a substantial reduction in MSE (in this case, variance).

as microflake phase function [Jakob et al. 2010]. This part is left for
future work.

7.1.2 Violation to the assumption of DA. Our current work ad-
dresses the ToF rendering challenges in homogeneous scattering
media where the scattering exhibits limited directionality. Media
with heterogeneity, strong absorption effect and strong directional-
ity may violate the assumptions of diffusion approximation. In such
cases, diffusion theory may not be applicable when incorporating
global transient radiance information. Experiments on the effects of
absorption coefficients and phase directionality are conducted, and
fortunately, our method can retain its robustness (see supplemen-
tary note Section C.5). Additionally, as elliptical sampling in EDA
involves a two-step approach, the reused direction from EDA may
be sub-optimal for peaky phase function theoretically. However, we
find that the 2D radiance contribution of the product of two consec-
utive phase functions for elliptical connection does not differ much
from the single phase function case (see supplementary note Section
C.6), therefore, local phase function still works well for MIS. For
scenes with homogeneous scattering media in distinct regions, our
work can still be applied in bidirectional methods, where vertices
on emitter paths can be regarded as point sources.

7.1.3 Scenes with complex visibility. Using diffusion theory in scenes
with complex visibility lacks robust theoretical substantiation. How-
ever, for efficiency, visibility in RIS can be can be overlooked, as
noted by Bitterli et al. [2020]. Our experiments indicate that, even
when emitters are not directly visible, our sampling method can
still greatly enhance rendering quality. However, incorporating vis-
ibility term in unidirectional renderers poses inherent challenges.
For example, calculating ray-scene intersection for every candidate
sample during RIS becomes computationally burdensome. This over-
head might outweigh the performance gains, even if strategies are
utilized for acceleration, like caching a shadow map for the emitter.
For future works, it would be interesting to investigate how our

method can be applied for differentiable rendering in transient state,
since higher sampling efficiency generally yields better backward
performance. Additionally, investigating the compatibility of our
method with more sophisticated rendering frameworks, such as bidi-
rectional path tracing and metropolis light transport, could prove

valuable, particularly in rendering challenging scenes like non-line-
of-sight simulation setups. We believe that our study provides in-
spiration for future researches in time-of-flight sensor simulation,
especially in scenarios involving diverse and complex scattering.
The testing scenes and code of our method in both pbrt-v3 and
Tungsten frameworks can be found in our supplementary material.
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